

Hurricane Hardening Research

Presentation to the Louisiana Public Service Commission

May 4, 2007

Mark A. Jamison, PURC Director

Overview

- Background on PURC
- Impetus for Hurricane Hardening Research Coordination
- Research Projects

PURC Background

- Founded in 1972
- Located in the Economics Department, Warrington College of Business Administration
- Purpose: Enhance executives', regulators', academics', and students' knowledge of issues confronting public utilities and regulatory agencies
- Support: Utilities and FPSC, programs, and research

PURC Research, 2002-2006

	Number			
Туре	Intl.	Domestic	Either	Total
Applied Journals	9	6	8	23
Academic Journals	5	10	19	34
Books			1	1
Book Chapters	2	2	13	17
Working Papers	9	20	20	49
Case Studies	2	2		4

PURC Recent and Ongoing Research Topics

General

- Service Quality
- Leadership
- Body of Knowledge
- Regulatory Associations
- Stability of Regulatory Institutions
- Regulatory Risk

Energy

- Distributed Generation
- Pricing and Rate Design
- NOx, SO2, and Climate Change Policy
- Fuel Diversity and Policy Uncertainty

<u>Telecoms</u>

- Telecom Competition
- Ownership of Utility Services
- Universal Service Programs
- Net Neutrality

Water

Benchmarking Water
 Utilities in Central America

Body of Knowledge on Utility Regulation visit www.regulationbodyofknowledge.org

PURC Programs

Domestic

- PURC Annual Conference
- Leadership workshops
- Roundtables
- Bar Association Conf.

<u>International</u>

- PURC/World Bank International Training Program
 - > 1700 people; 131 countries
- PURC/OOCUR Advanced Training Program

International (Cont.)

- Standing Cooperative Programs – University of Cape Town, IIS-Zambia
- Recent Custom Training Programs and Other Outreach
 - Telecoms Thailand,
 Trinidad & Tobago,
 Nigeria, Uganda
 - Energy Cambodia,
 Peru, South Africa, Brazil,
 Mexico, Namibia
 - Water Uganda, China

Impetus for Hurricane Hardening Research

2004 Hurricane Season

45 Days, 4 Hurricanes... 23 Days of Restoration Activity

	Charley	Frances	lvan	Jeanne
Date of landfall	A ug 13	Sept 5	Sept16	Sept 26
C ategory at peak	C at4	C at2	C at3	C at3
Peaknumberof customersout	502,000	832,898	10,000	722,000
Substationsout	83	105	3	86
D aysofstorm restoration	10Days	7 Days	1Day	5Days

2004 System Impact, TECO

	<u>Charley</u>	<u>Frances</u>	<u>Jeanne</u>
<u>Distribution</u>			
Circuits Out	68	223	252
Lights Out	353	2519	639
Wire Down (spans)	2,540	5,780	6,600
<u>Transmission</u>			
Circuits Out	17	21	42
Wire Down (spans)	74	34	151
<u>Substations</u>			
Distribution Out	23	46	70
Transmission Out	17	21	42

Storm Season 2004-2005, FPL 7 Storms / 15 Months

2004 Season

Event	Affected Customers	Days to Restore 100%
Charley	874,000	13
Frances	2,786,300	12
Jeanne	1,737,400	8
Dennis	508,800	3
Katrina	1,453,000	8
Rita	140,000	2
Wilma	3,241,437	18

Hurricane force winds

Tropical storm force winds

14

Source: FPL

FPL 2005 - Distribution and Transmission Repair

Distribution

- 12,632 poles (FPL & non-FPL)
- 930 miles of OH conductor
- 570 miles of OH service conductor
- 1.1 million OH splices
- 30 miles of UG cable
- 100 miles of UG service cable

Transmission / Substation

- 100 structures
- 7 miles of conductor
- 1 substation transformers
- 7 regulators
- 16 breakers

FPSC Response

- Workshops with utilities, consultants, and academics on how best to prepare Florida's electric infrastructure for hurricanes
- New standards
- Ongoing monitoring and reporting

http://www.psc.state.fl.us/utilities/electricgas/eiproject/

FPSC 9-Point Preparedness Plans

- 3-year vegetation management cycles
- Trans. and distribution geographic info system
- Upgrade wooden structures
- Data gathering, retention, and forensic analysis
- Audit joint-use pole attachment agreements
- 6-year transmission inspection program
- Track outage data for overhead vs. underground
- More utility coordination with local government
- Collaborative research coordination

Why Research Coordination?

- Concerned that utilities were generally unaware of each other's research efforts
- Desire to increase focus on hardening research
- Interest in making research results generally available

Research Approach

Research Coordination Effort

- Sponsored by all electric utilities in the state and governed by Steering Committee
 - IOUs: FPL, Progress, Gulf Power, TECO, FPU
 - Municipal Association
 - Coop Association
 - Lee County Electric Cooperative
- PURC coordination
 - Manage process; review research plans and products for academic standards

Workshop, June 9, 2006

- Utility managers
 - Review of hurricane experiences and key knowledge gaps
- Researchers
 - Research experiences and capabilities
 - UF, FSU, USF, Texas A&M, Cornell, Davies Consulting, Applied Research Associates

Workshop Conclusions

Practical research needed on

- Wind measurement and testing
- Improved materials
- Forensic analysis
- Cost-effectiveness of approaches
 - Overhead vs. underground
 - Vegetation management
 - Wind standards
- Joint use loads

Research Agenda

- Economics of Undergrounding Existing Overhead Facilities
 - Addresses cost-effectiveness issue
- Granular Wind Analysis
 - Addresses wind measurement and testing, forensic analysis, and standards
- Vegetation Management best practices

http://bear.cba.ufl.edu/centers/purc/energy/hurricane.htm

Undergrounding Research

- Launched in Fall 2006
- Consultant: InfraSource (Richard Brown)
- Phases
 - I Meta-analysis of existing literature to see what is already known (completed)
 - II Case studies on what might be unique about Florida (underway)
 - III Computer model to project costs/benefits of specific undergrounding requests (starts in June)

Undergrounding and Storm Surge

Pensacola Beach: Single Phase cabinet washed off pad and cables pulled out of terminations.

Meta-Analysis

- Examined 61 documents
 - Consultant Reports
 - State Regulatory Reports
 - Municipal Reports
 - International Reports
 - System Reliability Modeling
 - Failure Rate Modeling
 - Property Value
- Primary Issues
 - Cost
 - Benefits
 - Disadvantages
 - Funding

Meta-Analysis Executive Summary

Existing Studies show:

- Undergrounding has both benefits and disadvantages
- Quantifiable benefits cannot justify undergrounding
- Undergrounding is expensive
 - About \$1 million per mile (initial cost)
 - Customer service work costs extra
 - Cost can vary widely
 - Broad implementation requires rates to about double

- Undergrounding requires additional costs
 - Third-party attachments (add 25% to initial cost)
 - Customer equipment (\$1,500 to \$7,000 per customer)
 - Funding additional costs is a critical element
- Funding in general is a critical element

Other Findings

- No state requires undergrounding of existing facilities
- Ex post analyses on actual UG projects have not been done
- Few studies address negative impacts
- Few studies consider strengthening existing overhead systems
- Storm reliability models are almost non-existent
- Equipment failure rates as a function of hurricane strength are almost non-existent
- Existing research on mitigating the impacts of major storms on electric distribution is not sufficient for use in a detailed study

Florida 2005 FPSC Study

- Conversion Cost Estimates (IOUs)
 - Residential subdivision: \$2,475 per customer affected
 - Residential feeders: \$11,288 per customer affected
 - Mainline urban commercial: \$36,737 per customer affected

- Costs do not include
 - Customer service equipment
 - Third-party attachments
- Rate impact
 - 81% increase if spread over all customers
 - 141% increase if spread over residential customers only

Davis Island

- \$3,200 per customer for a 3000 customer project
- Fort Pierce
 - Broad conversion is not iustifiable
 - Overhead hardening may be preferable
- Jacksonville
 - \$3,000 to \$7,000 per customer
- Tallahassee
 - High environmental impact in sensitive areas

"Leadership in Infrastructure Policy"

Florida Studies

Palm Beach

Total UG cost would be \$60 million

MUUC Report

Difference of UG vs. hardened OH is \$835,000 per mile

30

Source: InfraSource

www.purc.ufl.edu

Conclusions Regarding Insights for Modeling

Assessment of Proposed Projects

- Construction cost models are adequate
- Maintenance cost models are adequate
- Storm reliability models are inadequate
 - Equipment hurricane failure rates are not well known
 - The effects of mitigation tactics are not well known
 - Detailed hurricane simulation planning models do not exist

Source: InfraSource

Timeline

- Case studies
 - August 6, 2007 Final Report
- Computer model development
 - October 1, 2007 Final Report on methodology
 - March 30, 2008 Model and testing completed

Wind Research

- Coordinated effort of UF Civil Engineering, WeatherFlow, Utility Sponsors, and PURC
- Purpose: Measure hurricane winds at granular level and map to infrastructure damage
 - Forensic Analysis
 - Test using hurricane simulator

FCMP TOWERS

Motivation for Portable Towers

- Winds overland differ from winds over the ocean (over water is the basis for SSscale)
- Mean speed is lower and turbulent gusts are more severe in winds overland
- Can't fix a problem without understanding the cause
- Evaluation of infrastructure vulnerability (and hardening solutions) must start by filling this knowledge gap via direct wind measurements

Questions to Address

- How do we know what winds have really caused damage?
- How do we know what winds the infrastructure has actually withstood?

Existing Portable Weather Stations

- Stiff 10-m Steel Lattice Tower
- Remain stable in 200 mph winds
- Self-powered

- Instruments collect wind speed and environmental data
- Quick setup to hasten retreat from approaching storm

Source: Gurley

New Fixed Weather Stations

Developed, placed, and managed by

WeatherFlow http://www.weatherflow.com/index.php

- Tested and upgraded by UF Civil Engineering, Kurt Gurley
- Currently 12 stations
 - Anticipating 40

Wind Station Uses

 Monitor wind, barometric pressure, temperature 24/7/365

Data to sponsors, UF, PURC,

NOAA on proprietary basis

Forensic analysis and NOAA maps

NOAA Hurricane Research Division Maximum Sustained Wind Swath

Capacity testing without a hurricane

 Housing infrastructure can be tested under applied controlled loads to evaluate failure strength

 Same concept can be applied to power distribution infrastructure

FIELD TESTING – ROOF CONNECTIONS

- Test as-build capacity
- Install retrofit
- Test retrofit capacity
- Relate forces to winds
- Evaluate effectiveness

Source: Gurley

www.purc.ufl.edu

FIELD TESTING - SHEATHING CAPACITY

- Cut out sheathing and trusses
- Apply suction load until failure
- As-nailed
- Re-nailed

Source: Gurley

www.purc.ufl.edu

Vegetation Management

- Best Practices workshop, March 5-6, 2007
 - Report available online
 - http://bear.cba.ufl.edu/centers/purc/energy/hurricane.htm
 - Selected key conclusions
 - Laws needed for utility access
 - Better communications are needed
 - Not directly relevant to hurricanes

Conclusions

- Collaborative research has been a success thus far
 - Good projects initiated and sound results
 - Utilities working together and supportive of effort is critical
 - Many of the research questions are applied, so academic research is needed only in selected areas